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Abstract
Often the current mode coupling theory (MCT) of glass transitions is compared
with mean field theories. We explore this possible correspondence. After
showing a simple-minded derivation of MCT with some difficulties we give a
concise account of our toy model developed to gain more insight into MCT. We
then reduce this toy model by adiabatically eliminating rapidly varying velocity-
like variables to obtain a Fokker–Planck equation for the slowly varying density-
like variables where the diffusion matrix can be singular. This gives room for
non-ergodic stationary solutions of the above equation.

1. Introduction

Our understanding of phase transition starts from the famous thesis of van der Waals of
1873 where complex effects of intermolecular interactions were put into two parameters
often denoted as b and a representing, respectively, the repulsive and attractive parts of
intermolecular forces. This theory was transcribed into magnetism resulting in the Weiss
theory of ferromagnetism which contains a single parameter measuring the strength of the
molecular field. These mean field theories were remarkably successful and provided a good
beginning of phase transition theory. Shortcomings of these theories were soon noticed,
especially after Onsager’s exact analysis of the two-dimensional Ising model. Thus the basis
of the mean field theories were examined and exactly solvable model was constructed which
yielded mean field theory results [1]. The characteristics of this model is that the attractive
part of the intermolecular potential has an infinite range after a certain limiting procedure,
which suppress fluctuation effects responsible for deviations from the mean field behaviour.
Efforts to incorporate neglected fluctuation effects led to our current day understanding of
phase transition, in particular, critical phenomena.

In comparison, the case of structural glass is much less clear-cut [2]. First there are still
uncertainties about the nature of the glass transition. It is not clear whether there is a real
transition or just a cross-over. Eventhough one assumes a genuine transition, opinions differ
3 Permanent address: 4-37-9 Takamidai, Higashi-ku, Fukuoka 811-0215, Japan.
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among those who think that there is an underlying thermodynamic transition and those who
believe that the transition is merely a kinetic one. The case of a spin glass is much more
well understood, at least on the mean field level where we know the existence of a genuine
thermodynamic phase transition [3].

Under such circumstances it is quite significant that the first principle theory of the
structural glass transition, that is, the mode coupling theory (MCT), was proposed and
succeeded in explaining some aspects of glass transitions4 [4, 5]. Since the theory is still
rather crude, it is fair to regard the status of this theory as similar to that of the van der Waals
and Weiss theories mentioned above. As in the case of these theories the current MCT is beset
with serious difficulties. These basically come from the fact that the MCT formalism was
originally developed for critical phenomena focussing on very large length scales reaching to
thousands of ångstroms. Applications to glasses have difficulties due to its primarily short
length scales and due to its own peculiarities. These difficulties are:

(a) The factorization approximation which replaces the four-body time correlation
functions by the product of two-body time correlation functions is essential to obtain the
self-consistent MCT equation. This is especially uncontrolled at short length scales of at most
10–20 Å (see the following section).

(b) The idealized MCT predicts a sharp dynamic transition to a nonergodic state at a certain
temperature. But MCT does not provide any information on the nature of this nonergodic state.

(c) The physical picture of the so called hopping processes in an extended version of MCT
is still lacking.

It should then be an urgent task for further progress to clarify the bases of the MCT.
Motivated by this desire we constructed a toy model having the following three features [6]:

• a reversible mode coupling mechanism;
• trivial statics;
• mean field type so that the model can be exactly solvable.

This toy model is distinguished from other toy models for glasses in that it closely mimics the
MCT [4, 5].

2. MCT

Here we present an over-simplified derivation of a self-consistent MCT equation of the
density–density time correlation function obtained first in [4, 5]. We start from the following
hydrodynamics-like continuum equation [7]:

m
∂

∂t
ρ(r, t) = −∇ · j(r, t) (1)

∂

∂t
j(r, t) = f(r, t) + · · · . (2)

Here m is the mass of a fluid molecule, ρ(r, t) is the number density, and j(r, t) is the
momentum density. The ellipsis in (2) contains the terms second order in the momentum
density, dissipative terms and thermal noise terms, which do not play a role here and will be
dropped hereafter.

Here we assume the existence of a free energy density functional H({ρ}). Then the body
force density f(r, t) is the number density times a force on a test particle of the same kind. The
latter is of negative gradient of the infinitesimal variation of the free energy density functional

4 More recent developments can be found in the collection of papers in Yip Y (1995).
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against infinitesimal density change, that is, −∇δH({ρ})/δρ(r). Therefore we find (here time
arguments are omitted)

f(r) = −ρ(r)∇δH({ρ})/δρ(r). (3)

Now, the exact form forH({ρ}) is unknown and various approximate forms are proposed.
For the purpose of deriving the MCT equation, it suffices to use the popular Ramakrishnan–
Yussouf form despite its shortcomings [8]:

H({ρ}) = kBT

∫
drρ(r)

[
ln

(
ρ(r)

ρ0

)
− 1

]

− 1
2kBT

∫
dr

∫
dr′c(|r − r′|)(ρ(r)− ρ0)(ρ(r

′)− ρ0). (4)

Here ρ0 is the density of the reference uniform liquid and c(|r − r′|) is the direct correlation
function [9] of the reference liquid. The Fourier transform ĉ(k) of c(r) is connected with the
static structure factor of the reference liquid S(k) through

ĉ(k) = ρ−1
0 − S(k)−1. (5)

The fact that the direct correlation function appears here is important because this is the only
place in this theory where the short-range correlation central to any liquid theory is incorporated.

The next step is to split f(r, t) into terms linear and quadratic in the density difference
δρ(r, t) ≡ ρ(r, t)− ρ0 as

f(r, t) = f l(r, t) + fnl(r, t) (6)

f l(r, t) = −∇p(r, t) (7)

fnl(r, t) = kBT

∫
dr′c(|r − r′|)δρ(r, t)∇′δρ(r′, t) (8)

where p(r, t) is the local pressure correct up to δρ(r, t). Combination of (1), (2) and (6)–(8)
tells us that the f l produces only linear density oscillations with constant wavevectors and
does not contribute to freezing. On the other hand, fnl(r, t) is the sum of numerous terms
oscillating with different frequencies, which, on the whole, look quite irregular. This fact also
makes it hopeless to try to find solutions to these equations.

However, we are not interested in individual solutions but only some statistical properties
of them, which are also measurable quantities. Among such quantities the most attention is
paid to the density–density time correlation function, whose normalized form is defined in
terms of ρk(t), the Fourier transform of δρ(r, t), by

φk(t) ≡ 〈ρk(t)ρ−k(0)〉
〈ρk(0)ρ−k(0)〉 . (9)

In obtaining this quantity from (1) and (2) we can regard fnl(r, t) as a kind of random force
familiar in the Langevin equation of Brownian motion [10]. Then the equation that determines
φk(t) requires knowledge of a memory kernel which is the time correlation function of fnlk (t),
the Fourier transform of fnl(r, t).

Explicitly the equation for φk(t) turns out to be [11]

d2φk(t)

dt2
= −�2

kφk(t)−
∫ t

0
dsMk(t − s)

dφk(s)

ds
(10)

where �k ≡ k
√
kBT/Sk is the frequency of the local density oscillation in liquids. Mk(t) is

the memory kernel given by

Mk(t) = 1

mρ0kBT k2V
〈f nlk (t)f

nl
−k(0)〉 (11)
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where f nlk ≡ ik · fnlk and V is the system volume. Since this correlation function involves
products of four density fluctuations which are impossible to deal with directly, this is factorized
into products of two density–density correlation functions. This produces the feedback
mechanism responsible for freezing. The resulting self-consistent equation for the density–
density correlation function is the same as that given for the first time in [4]. In the above
simple derivation we have side-stepped the fact that the time dependence of fnl(r, t) in the
memory kernel is in fact governed by the ‘projected’ dynamics in the sense of the Zwanzig–
Mori formalism. The correct but more involved derivation starts from a Fokker–Planck type
equation [11]. Alternative simpler derivation explicitly relies on the strong assumption that
density fluctuations at various times obey Gaussian statistics [12].

The transition to non-ergodic states in this theory is driven by the nonlinear force term (8),
which, in turn arises from the quadratic (or harmonic) term of (4). The first term there
containing a logarithm is just for ideal gas. Therefore, the Hamiltonian of this theory does
not require complex nonlinear terms that characterize many other theories or models of glass
transitions.

3. Mean field toy model

3.1. Model

Our toy model is a set of oscillators with linear and random nonlinear couplings expressed
by the following Langevin equations for the N -component density-like variables ai(t) with
i = 1, 2, . . . , N and the M-component velocity-like variables bα with α = i, 2, . . . ,M . Here
and in what follows we will use Roman indices for the components of a and Greek for those
of b:

ȧi = Kiαbα +
ω√
N
Jijαajbα (12)

ḃα = −γ bα − ω2Kjαaj − ω√
N
Jijα(ω

2aiaj − T δij ) + fα (13)

〈fα(t)〉 = 0 〈fα(t)fβ(t ′)〉 = 2γ T δαβδ(t − t ′) (14)

where the summation is implied for repeated indices and overdots denote time derivatives. Here
γ is the decay rate of the velocity-like variables bα and ω gives a measure of the frequencies
of oscillations of the density-like variables aj . The thermal noises fα(t) are independent
Gaussian random variables with zero mean and variance 2γ T , T being the temperature of the
heat bath with which the system has a thermal contact. The choice of this variance guarantees
the proper equilibration of the variables {b}. The N ×M matrix Kiα plays an important role
in the model and for later purpose we impose the (one-sided) orthogonality

KiαKiβ = δαβ KiαKjα �= δij (15)

where the last equation is due to the inequality M < N . For M = N we can impose an
additional condition Kiα = δiα and hence trivially KiαKjα = δij . We also note that Kiα

governs the linearized reversible dynamics of the model with the dynamical matrix Ω given
by �ij ≡ ω2KiαKjα . The mode coupling coefficients Jijα are chosen to be quenched (time-
independent) Gaussian random variables with the following properties:

Jijα
J = 0

JijαJklβ
J = g2

N
[(δikδjl + δilδjk)δαβ +Kiβ(Kkαδjl +Klαδjk) +Kjβ(Kkαδil +Klαδik)]

(16)
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where · · ·J denotes average over the J values. In constructing this model, we were motivated
by the works [13,14] in which random coupling models involving an infinite component order
parameter have been shown to be exactly analysed by mean-field-type concepts.

Equation (12) is analogous to the equation of fluid continuity and (13) is like the equation
of motion where the right-hand side is like the force acting on a fluid element which corresponds
to (1) and (2), respectively. We will eventually takeN andM infinite with the ratio δ∗ ≡ M/N

kept finite.
One can derive from the Langevin equations (1)–(3) the corresponding Fokker–Planck

equation for the probability distribution function D({a}, {b}, t) for our variable set denoted as
{a}, {b} as follows:

∂tD({a}, {b}, t) = L̂D({a}, {b}, t) (17)

where the Fokker–Planck operator is given by L̂ = L̂0 + L̂1 + L̂MC with

L̂0 ≡ ∂

∂bα
γ

(
T

∂

∂bα
+ bα

)
L̂1 ≡ Kjα

(
− ∂

∂aj
bα +

∂

∂bα
ω2aj

)

L̂MC ≡ 1√
N
Jijα

(
− ∂

∂ai
ωajbα +

∂

∂bα
ω(ω2aiaj − T δij )

)
.

(18)

It is then easy to show that the equilibrium stationary distribution (i.e. L̂De(a, b) = 0) is given
by

De({a}, {b}) = cst exp

(
−

N∑
j=1

ω2

2T
a2
j −

M∑
α=1

1

2T
b2
α

)
(19)

where cst is the normalization factor.

3.2. Analysis and discussion

We aim at finding the set of five equilibrium time correlation functions defined by

Ca(t − t ′) ≡ 1

N
〈aj (t)aj (t ′)〉 Cab(t − t ′) ≡ 1

M
Kjα〈aj (t)bα(t ′)〉

Cba(t − t ′) ≡ 1

M
Kjα〈bα(t)aj (t ′)〉 Cb(t − t ′) ≡ 1

M
〈bα(t)bα(t ′)〉

CK
a (t − t ′) ≡ 1

M
KiαKjα〈ai(t)aj (t ′)〉.

(20)

It turns out that we need to have the last correlation function to close the self-consistent set
of equations for the correlators when M < N . Note that for the case M = N , we can take
Kiα = δiα , and then CK

a (t − t ′) = Ca(t − t ′).
In order to obtain this self-consistent set of equations, it is most convenient to adapt

the generating functional method from which one can write down the set of effective linear
Langevin equations valid in the limit of M,N → ∞. We refer [17] for further details. From
this effective Langevin equations, one can readily derive the following closed self-consistent
equations for t > 0 for the five correlators:

Ċa(t) = δ∗Cba(t)−,aa ⊗ Ca(t)− δ∗,ab ⊗ Cba(t) (21)

Ċba(t) = −γCba(t)− ω2CK
a (t)−,ba ⊗ CK

a (t)−,bb ⊗ Cba(t) (22)

Ċab(t) = Cb(t)−,aa ⊗ Cab(t)−,ab ⊗ Cb(t) (23)

Ċb(t) = −γCb(t)− ω2Cab(t)−,ba ⊗ Cab(t)−,bb ⊗ Cb(t) (24)

ĊK
a (t) = Cba(t)−,aa ⊗ CK

a (t)−,ab ⊗ Cba(t) (25)
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where, for any function X(t), X ⊗ a(t) ≡ ∫ t
−∞ dt ′X(t − t ′)a(t ′). The equations (21)–

(25) constitute the self-consistent equations for the five correlators Ca(t), Cba(t), Cab(t),
Cb(t) and CK

a (t). This set of equations can be solved numerically with the initial conditions
Ca(0) = CK

a (0) = T/ω2, Cab(0) = Cba(0) = 0 andCb(0) = T . Here the kernels, are given
by

,aa(t − t ′) ≡ δ∗ g
2ω4

T

(
Ca(t − t ′)Cb(t − t ′) + δ∗Cab(t − t ′)Cba(t − t ′)

)

,ab(t − t ′) ≡ −2δ∗ g
2ω4

T
Ca(t − t ′)Cba(t − t ′)

,ba(t − t ′) ≡ −2δ∗ g
2ω6

T
Ca(t − t ′)Cab(t − t ′)

,bb(t − t ′) ≡ 2g2ω6

T
Ca(t − t ′)2.

(26)

These kernels arise from the nonlinear mode coupling terms in (17) and (18). Note that the
correlator CK

a (t, t
′) is not involved in the ,.

For further analyses it is very convenient to work with the equations of the Laplace
transformed correlation functions defined as CL(z) ≡ ∫ ∞

0 dt e−zt C(t). Performing the
Laplace transformation of the self-consistent equations and rearranging them we obtain

CL
a (z) = T

ω2

1

z +,L
aa(z)

[
1 − δ∗ ω2(1 −,L

ab(z))
2

(z +,L
aa(z))(z + γ +,bb(z)) + ω2(1 −,L

ab(z))
2

]
(27)

CL
ab(z) = − T (1 −,L

ab(z))

(z +,L
aa(z))(z + γ +,bb(z)) + ω2(1 −,L

ab(z))
2

(28)

CL
ba(z) = T (1 −,L

ab(z))

(z +,L
aa(z))(z + γ +,bb(z)) + ω2(1 −,L

ab(z))
2

(29)

CL
b (z) = T (z +,L

aa(z))

(z +,L
aa(z))(z + γ +,bb(z)) + ω2(1 −,L

ab(z))
2

(30)

CKL
a (z) = T

ω2

[
z +,L

aa(z) +
ω2(1 −,L

ab(z))
2

z + γ +,bb(z)

]−1

. (31)

For δ∗ = 1 where M = N and Kiα = δiα , CL
a (z) = CKL

a (z) reproduces the
equation derived in [15], apart from the wavenumber dependence. Note that if we put
,L
aa(z) = ,L

ab(z) = 0 by hand, (27) or (31) gives a closed equation for Ca(t) alone. This
equation is nothing but the Leutheusser’s schematic MC equation giving a dynamic transition
from the ergodic phase to the nonergodic one [4]. But in reality,aa and,ab cannot be ignored
a priori and our numerical solution strongly indicates that the system remains ergodic for all
temperatures due to the strong contribution of these so-called hopping terms. Furthermore these
hopping terms cannot be made self-consistently small as temperature is lowered. Therefore
the density correlator does not show a continuous slowing down with lowering temperature.
This result was striking to us since usually a mean-field-type theory, such as the dynamics of
the spherical p-spin model in the limit ofN → ∞, often gives a sharp dynamic transition [16].

Thus it is very difficult to understand the idealized MCT without relying upon uncontrolled
approximations. It is also interesting to note that the ergodicity restoring process in our
toy model (represented by the kernels ,aa and ,ab) has nothing to do with a thermally
activated energy barrier crossing since the quadratic Hamiltonian in our model does not possess
such a barrier.
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4. Reduced Fokker–Planck equation for the density-like variables

Possibility of nonergodic states in our model can be seen more directly by adiabatically
eliminating the variables {b} in the limit of large γ and obtaining the reduced Fokker–Planck
equation for the distribution function D̃({a}, t) containing only the {a} variables:

∂D̃({a}, t)
∂t

= LFP D̃({a}, t)

≡ ∂

∂ai
Qij ({a})

(
∂

∂aj
+
ω2

T
aj

)
D̃({a}, t) (32)

where we have defined the Fokker–Planck operator LFP through the second member of the
above equation. Here the diffusion matrix Qij ({a}) is given by

Qij ({a}) ≡ T

γ
MiαMjα (33)

Miα ≡ Kiα +
ω√
N
Jikαak. (34)

The positive semi-definiteness of the diffusion tensor Q is very easy to show because for an
arbitrary N component real vector we have

xiQijxj = T

γ

∑
α

(
Miαxi

)2 � 0. (35)

The crucial point is that the diffusion matrix Qij is singular for M < N , i.e. det|Q| = 0
giving rise to zero eigenvalues for Q [17]. This implies that the Fokker–Planck equation (32)
can have nonequilibrium stationary solution other than the equilibrium one, D̃e({a}) =
cst exp(−ω2a2

j /2T ). This nonequilibrium stationary solutions are precisely the kind of
nonergodic states found numerically in the present toy model. In fact, a class of stationary
solutions is given by

D̃s({a}) = F(ξjaj ) exp

(
− ω2

2T
a2
i

)
(36)

where ξi is an eigenvector of the diffusion matrix Qij with zero eigenvalue and F(x) a non-
negative function. If the function F(x) is a constant, then D̃s({a}) = D̃e({a}) is the equilibrium
distribution, otherwise it is a nonequilibrium stationary distribution. Hence the model is
nonergodic for 0 � δ∗ < 1.

Let us now investigate this point somewhat further. We first define the following non-
negative ratio:

R({a}, t) ≡ D̃({a}, t)
D̃e({a})

(37)

and then introduce a Boltzmann’s H-like quantity as

H(t) ≡
∫

d{a} D̃({a}, t) lnR({a}, t) (38)

where the integration is over all the variables in the set {a}. Using the normalization property
of the distribution function and integrating by parts assuming a natural boundary condition we
find

Ḣ(t) =
∫

d{a} D̃({a}, t)L†
FP ({a}) lnR({a}, t) (39)
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with L†
FP ({a}) the adjoint operator of LFP ({a}):

L†
FP ({a}) ≡

(
∂

∂ai
− ω2

T
ai

)
Qij ({a}) ∂

∂aj
. (40)

Now we readily verify that

L†
FP ({a}) lnR({a}, t) = 1

R
L†
FPR −Qij

1

R

∂R

∂aj

1

R

∂R

∂ai
. (41)

Substituting this into (39) we finally find

Ḣ(t) = −
∫

d{a}D̃({a}, t)Qij ({a})∂ lnR({a}, t)
∂ai

∂ lnR({a}, t)
∂aj

(42)

where the contribution of the first term in (41) vanishes since∫
d{a}D̃

R
L†
FP · · · =

∫
d{a}D̃eL†

FP · · · =
∫

d{a}(LFP D̃e

) · · · = 0. (43)

This result shows a kind of Boltzmann’s H-theorem [18] (see [10] for a discussion for general
master equations with detailed balance):

Ḣ(t) � 0. (44)

Let us suppose that we have performed a transformation of the variables {a} → {s},
D̃({a}) d{a} → D̂({s}) d{s},R({a}) → R̂({s}) etc, so that the matrixQij ({a}) is diagonalized:

Q̂ij ({s}) = λi({s})δij (45)

with the eigenvalues λi({s}) non-negative functions of {s}. For the case of diagonalized
Qij , (45), the results (42) and (43) become

∫
d{s}

∑
i

λi({s})D̂({s}, t)
(
∂ ln R̂({s}, t)

∂si

)2

� 0. (46)

The stationarity condition ∂/∂tD̂({s}, t) = 0 or Ḣ(t) = 0 then implies
∫

d{s}
∑
i

λi({s})D̂({s}, t)
(
∂ ln R̂({s}, t)

∂si

)2

= 0. (47)

If we denote those subset of the variables of {s} with positive eigenvalues as sα , α =
1, 2, . . . ,M ′(� M), which we denote as {s}′, we must have in the region D̂({s}, t) > 0,

∂ ln R̂({s}, t)
∂sα

= 0 for λα({s}) > 0. (48)

We note that the validity of condition (47) in general depends on the regions in the space
of the variables {s} through {s} dependence of the λ. Thus, in a particular region in
which λα({s})D̂({s}) are positive definite, R({s}, t) does not contain sα . If we denote
the remaining set of the variables {s} than those corresponding to positive eigenvalues as
uβ, β = M ′ + 1,M ′ + 2, . . . , N , which are corresponding to the zero eigenvalues, we should
have R̂({s}, t) = R̂({s}′, {u}, t) = R̂({u}, t). Consequently, from (37), the general form of
non-equilibrium stationary state distribution function is

D̂S({s}′, {u}) = R̂S({u})D̂e({s}′, {u}). (49)

The previous result, (36), is a special case of this general form.
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5. Summary and discussion

Our toy model analyses show that the so-called hopping processes introduced as a correction
to the idealized MCT [5] are the effects of the velocity-like variables, which still enter in
the framework of the mean field treatment, and are not directly related to the barrier-crossing
mechanism. In our toy model, the strength of the hopping processes can be adjusted through
the parameter δ∗. Possible nonequilibrium stationary states are connected to the singularity
of the diffusion matrix of the reduced Fokker–Planck equation of section 4 involving only the
variables {a}. This feature, suitably extended to a general master equation, would be common
to many kinetically constrained glass transition models [19] and is worth further exploration.

Acknowledgments

We thank K Dawson, M Fisher, W Götze, J Jäckle, A Latz, S J Lee, M Mézard, R Schilling
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